

LW N721616

16 路输入 16 路输出

网络型智能数字量采集器

使用说明

目 录

第1章 产品概述	4
1.1 概述	4
1.2 性能特点	4
1.3 技术参数	5
第2章 外观尺寸	6
2.1 产品外观	6
2.2.1 前视图	6
2.2.2 后视图	7
2.2.3 侧视图	7
2.2.4 顶视图	7
第3章 产品接线图	8
产品接线	8
第4章 引脚说明及指示灯	9
4.1 引脚定义	9
4.2 LED 指示灯	9
第 5 章 软件操作	10
5.1 搜索 IO 模块	10
5.2 设置 IO 模块	10
5.2.1 设置主参数	12
5.2.2 设置串口 1	13

5.2.3 设置串口 2	14
5.2.4 状态列表	15
5.3 测试 IO 模块	16
5.3.1 模块作为服务器模式	16
5.3.2 模块作为客户端模式	18
第6章 通讯协议及寄存器定义	22
6.1 通讯协议	22
6.1.1 读线圈状态	22
6.1.2 写单个线圈状态	23
6.1.3 写多个线圈状态	23
6.1.4 读保持寄存器	24
6.1.5 写单个保持寄存器	25
6.1.6 写多个保持寄存器	25
6.1.7 错误码表	26
6.2 寄存器定义	26
6.2.1 公共寄存器	26
6.2.2 N721616 寄存器	27
6.3 协议应用范例	29
6.3.1 读寄存器命令举例	29
6.3.2 写单个寄存器命令举例	30
6.3.3 写多个寄存器命令举例	31
6.3.4 写单个保持寄存器命令举例	32

33	6.3.5 写多个保持寄存器命令举例.
35	第7章 装箱清单

第1章 产品概述

1.1 概述

LW N721616 为网络型智能数字量采集器,具有 16 路干接点数字量输入(DI)和 16 路 A 型继电器输出数字量(DO); 电源及 RJ-45 接口均加入防雷保护电路,产品稳定可靠; 丰富的指示灯方便调试,运行状态一目了然; 采用标准 Modbus TCP 协议,符合工业标准,方便系统集成商、工程商使用; 方便与上位机通讯,可实现快速组网,构建监测系统; 适用于各种工业场合及自动化系统,通过 TCP/IP 网络即可实现对远程数字量设备的数据采集和控制。

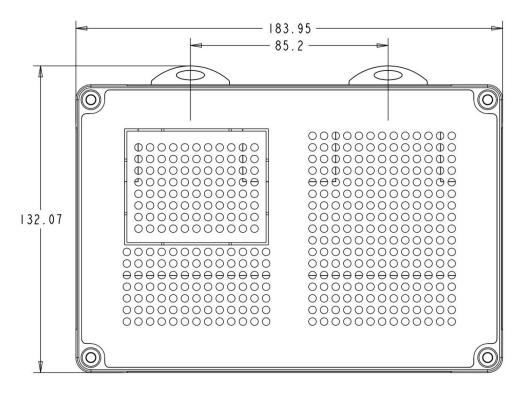
设备同时带有一个 RS232 接口和一个 RS485 接口,向下级联 RS232 接口或者 RS485 接口的设备,可以将 RS232 接口或者 RS485 接口数据转到网络,实现串口和以太网的双向透明传输、Modbus协议传输或虚拟串口传输功能。

1.2 性能特点

- 16 路干接点数字量输入(DI)
- 16 路 A 型继电器输出(DO)
- DI 输入范围: 0~5V
- DO 输出: 5A, 250VAC
- RS232 接口可连接任意厂家 RS232 设备
- RS485 接口可连接任意厂家 RS485 设备
- 双硬件看门狗,绝不死机
- 采用 32 位 ARM 嵌入式 CPU, 高性能低功耗
- 采用 Modbus TCP 通信协议,支持客户端和服务器模式
- 丰富的的指示灯,方便调试
- RJ-45 网络通信接口提供防雷保护
- 电源具有过流、过压、防反接及防雷保护
- 宽电源电压设计
- 工业级温度范围,应对严苛现场环境
- 标准导轨安装或螺钉固定

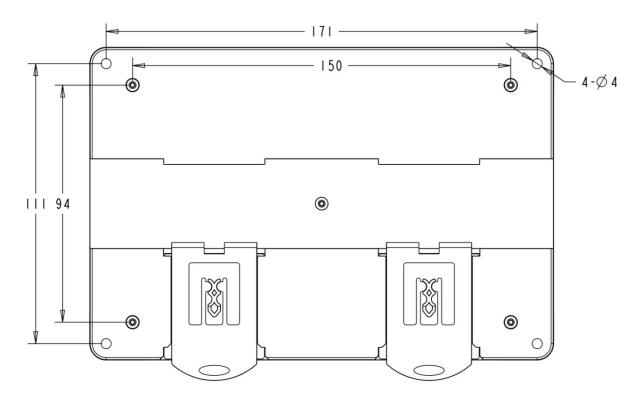
1.3 技术参数

	DI	16 路干接点	
	触发电压	小于 1V 为逻辑 1, 大于 2.5V 为逻辑 0	
DI 接口	触发电流	小于 1mA	
	防雷防护	600W	
	端口过压保护	30V	
 DO 接口	DO	16 路 A 型继电器	
DO 按口	触点容量	5A/250VAC; 5A/30VDC	
	通讯接口	RJ-45	
	速率	10/100M 自适应	
网络通信参数	通讯协议	Modbus TCP	
网络迪信参数	嵌入协议	支持 TCP Server/Client 模式	
	设置方式	设置程序	
	防雷防护	250W	
	端口数量	1	
RS485 接口	接口形式	凤凰端子	
	通讯方式	透传/Modbus/虚拟串口/级联	
	端口数量	1	
RS232 接口	接口形式	DB9 公头	
	通讯方式	透传/Modbus/虚拟串口/级联	
	电源规格	9-28VDC (推荐 24VDC)	
由酒会粉	功耗	760mA@12VDC	
电源参数 防雷防护		3000W	
	端口压保护	30V (可自恢复)	
	工作温度、湿度	-40~85℃,5~90%RH,不凝露	
二十十%	储存温度、湿度	-60~125℃,5~90%RH,不凝露	
其他	尺寸	182mm*122mm*32mm	
央他	质保	6年质保	

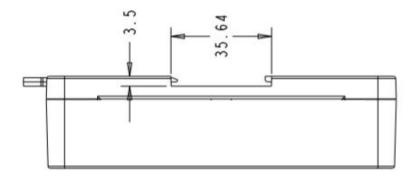


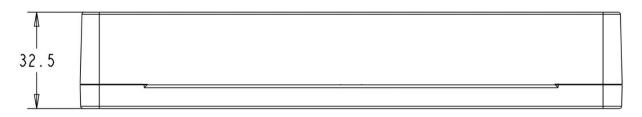
第2章 外观尺寸

2.1 产品外观

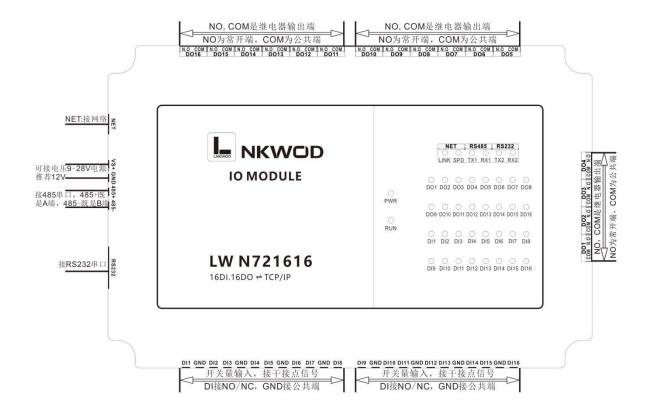


2.2.1 前视图




2.2.2 后视图

2.2.3 侧视图


2.2.4 顶视图

第3章 产品接线图

产品接线

第4章 引脚说明及指示灯

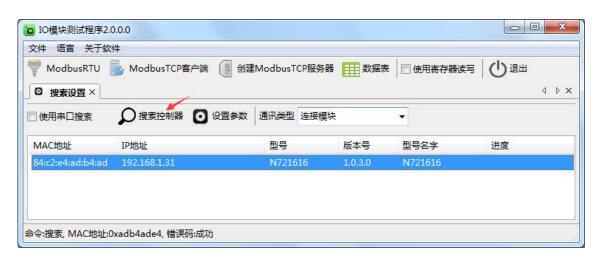
4.1 引脚定义

引脚定义	说明	
NET	RJ-45 接口	
VS+	电源正	
GND	电源负	
485+	RS485+	
485-	RS485-	
RS232	RS232 公头	
DI(GND)	数字量信号输入公共端	
DI1~16	数字量信号输入端	
DO1~16(COM)	数字量信号输出端	
DO1~16(NO)	数字量信号常开输出端空	

4.2 LED 指示灯

LW N721616 外设 40 个状态 LED 指示灯,能够准确及时报告设备的工作状态,为工程的施工和调试带来极大的方便。其说明如下表所示:

指示灯	指示灯说明
PWR	电源指示灯(亮:有电源连接;灭:无电源连接)
RUN	闪烁:正常运行;常亮或者不亮:工作不正常
LINK	亮:表示有网络连接,闪烁:表示有网络数据收发
SPD	亮:接入网络,灭:未接入网络
TX1	闪烁: RS485 接口发送数据,灭: RS485 接口未通讯
RX1	闪烁: RS485 接口接收数据,灭: RS485 接口未通讯
TX2	闪烁: RS232 接口发送数据,灭: RS232 接口未通讯
RX2	闪烁: RS232 接口接收数据,灭: RS232 接口未通讯
DI1~DI16	亮:闭合(DI有输入),灭:断开(DI无输入)
DO1~DO16	亮:闭合(DO有输出),灭:断开(DO无输出)



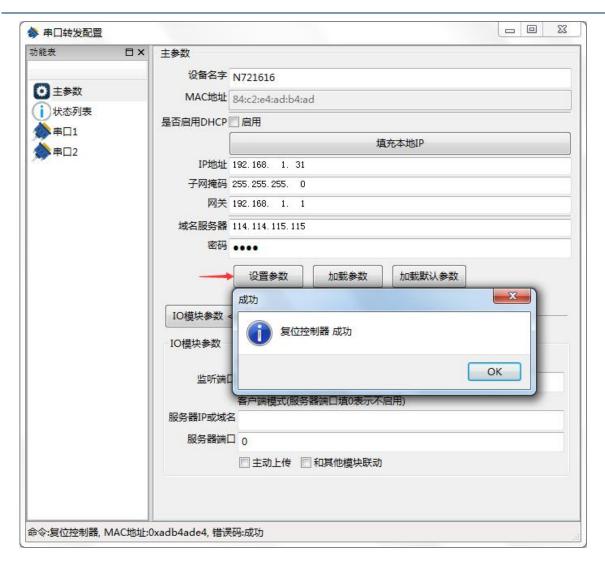
第5章 软件操作

本软件为无安装的绿色测试软件,拷贝过来即可使用,软件只对设备产品进行配置和测试,不做其他用途,在使用软件对IO模块进行操作时,请保证模块正常加点并连接好通讯线缆。

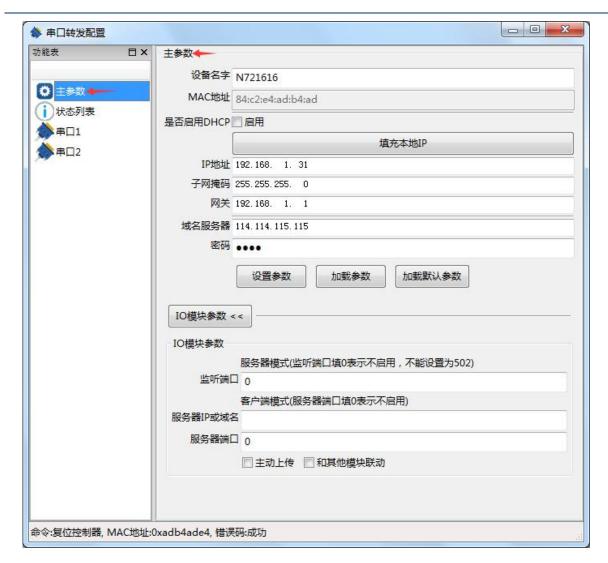
5.1 搜索 IO 模块

打开 IO 模块测试程序,该程序默认"使用网络搜索",点击"搜索控制器"图标,局域网内的所有模块会展示出设备列表框中,页面会显示设备的参数包括 MAC 地址,IP 地址(IO 模块默认出厂IP 地址为 192.168.1.31),型号,版本号,控制器名字。如下图:

5.2 设置 IO 模块


选中模块,双击或者点击"设置参数"图标(双击设备列表中的模块会把 IP 地址自动导入"串口转发配置"界面,使用"串口转发配置"界面之前请确保要测试的模块 IP 地址与电脑在同一网段),该模块的默认参数会显示于"串口转发配置"界面中,按需要修改其参数,如下图:

如果模块作为客户端连接到一个服务器,则"服务器IP或域名"和"服务器端口"也要设置,再点击"设置参数"图标,模块会保存新的参数并重启。如下图:



5.2.1 设置主参数

点击"主参数"图标,页面显示主 IO 模块 N721616 的参数,包括"设备名字"、"MAC 地址"、"IP 地址"、"子网掩码"、"网关"、"域名服务器"、"密码"和 IO 模块参数等,配置完成后点击"设置参数"按钮,如下图:

5.2.2 设置串口1

点击"串口1"图标,页面显示串口1(RS485)的配置界面,包括"波特率"、"数据位"、"校验位"、"停止位"、"串口类型"、"接收超时"、"间隔超时"、"协议类型"、"网络通讯类型"、"端口"等参数,设置好参数后,必须勾选启用"是否启用"选项,然后先点击"设置到设备"图标,再点击"复位"图标,设置才能生效,如下图:

接收超时: 串口发出去数据后, 收到反馈数据的时间

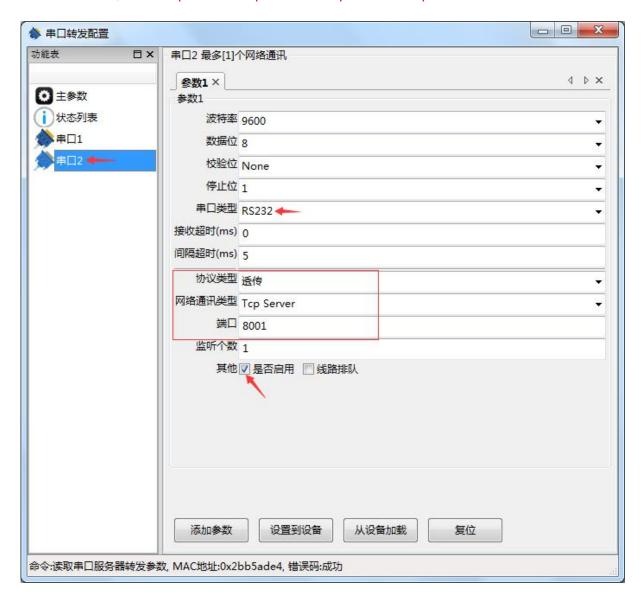
间隔超时: 串口发出的每个相邻指令的间隔时间

协议类型:默认透传,虚拟串口,Modbus

网络通讯类型: Tcp Sever, Tcp Client, Udp Sever, Udp Client, 串口

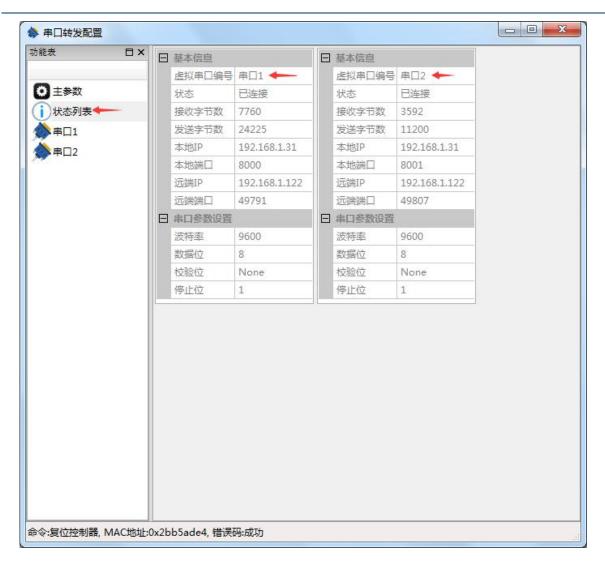
5.2.3 设置串口 2

点击"串口 2"图标,页面显示串口 2(RS232)的配置界面,包括"波特率"、"数据位"、"校验位"、"停止位"、"串口类型"、"接收超时"、"间隔超时"、"协议类型"、"网络通讯类型"、"端口"等参数,设置好参数后,必须勾选启用"是否启用"选项,然后先点击"设置到设备"图标,再点击"复位"图标,设置才能生效,如下图:


接收超时: 串口发出去数据后, 收到反馈数据的时间

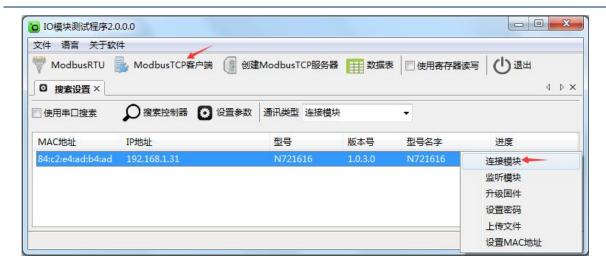
间隔超时: 串口发出的每个相邻指令的间隔时间

协议类型:默认透传,虚拟串口,Modbus

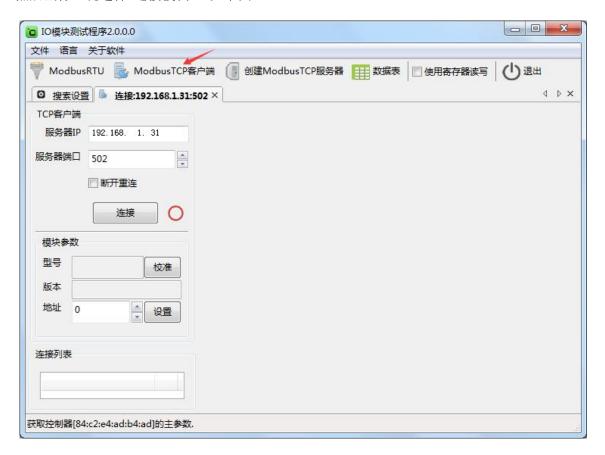

网络通讯类型: Tcp Sever, Tcp Client, Udp Sever, Udp Client, 串口

5.2.4 状态列表

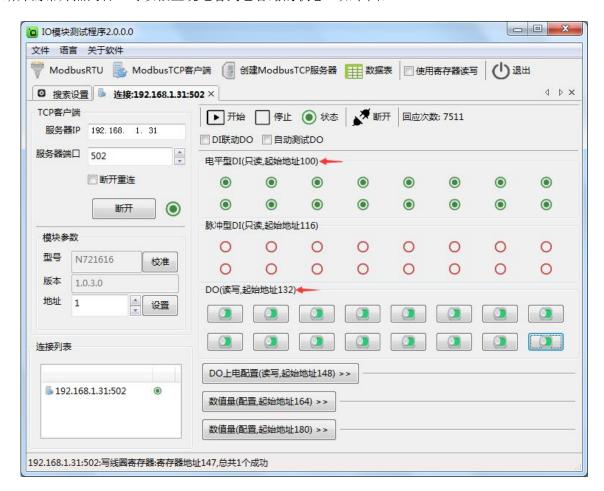
状态列表显示串口1和串口2连接的状态情况,参数配置正确时,在状态列表可看到串口的连接状态,否则看不到串口的连接状态,如下图:



5.3 测试 IO 模块


5.3.1 模块作为服务器模式

选中要设置的模块,点击"Modbus TCP 客户端"图标或者鼠标右键选择"连接模块",如下图:

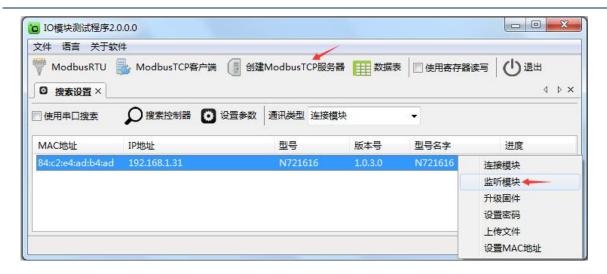

然后鼠标左键选择"连接模块",如下图:

点击"连接"图标,模块网络连接建立之后,"连接"按钮会变为"断开"按钮,同时测试界面左半部分显示为设备的 TCP 客户端参数(IP 地址(默认 192.168.1.31),服务器端口(默认 502)),模块参数(型号,版本,地址),连接列表会显示所有该局域网的 IO 网络模块。测试界面右半部分为

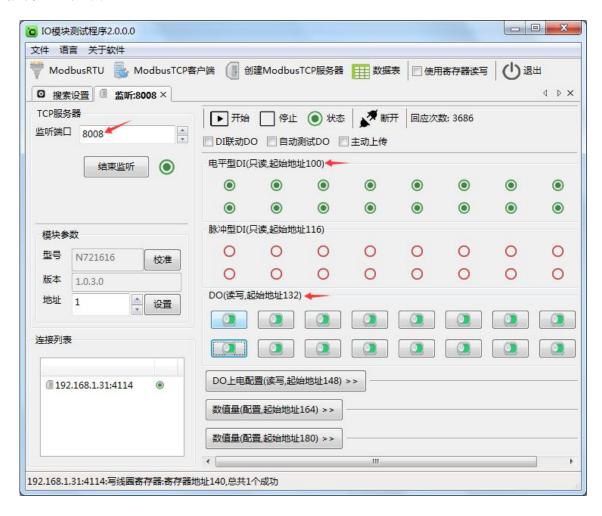
采集 DI 和 DO 的数值,DI 状态为只读值,红色色表示断开,绿色表示接通。DO 的各路状态均为读写值,可以很方便地改变其状态。写入值 0 表示常闭点闭合而常开点断开,写入值 1 表示常闭点断开而常开点闭合;上电状态 0 表示加电时常闭点闭合而常开点断开,上电状态 1 表示加电时常闭点断开而常开点闭合。可以很直观地看到它各路的状态。如下图:

5.3.2 模块作为客户端模式

模块作为客户端连接到一个服务器,需设置"服务器IP或域名"和"服务器端口"参数,例:服务器IP或域名设为"192.168.1.122",服务器端口设为"8008",再点击"设置参数"图标,模块会保存新的参数并重启。如下图:


备注:如果在广域网中使用IO模块,需设置"域名服务器"参数。

选中要设置的模块,点击"创建 Modbus TCP 服务器"图标或者鼠标右键选择"监听模块",如下图:


然后鼠标左键选择"监听模块",如下图:

监听端口输入"8008"(注意:此端口号一定和服务器端口号一致,否则不能通讯),点击"开始监听"图标,模块网络连接建立之后,"开始监听"按钮会变为"结束监听"按钮,同时测试界面左半部分显示为设备的 TCP 服务器参数(监听端口"8008"),模块参数(型号,版本,地址),连接列表会显示所有该局域网的 IO 网络模块。测试界面右半部分为采集 DI 和 DO 的数值,DI 状态为只读值,

红色色表示断开,绿色表示接通。DO 的各路状态均为读写值,可以很方便地改变其状态。写入值 0 表示常闭点闭合而常开点断开,写入值 1 表示常闭点断开而常开点闭合; 上电状态 0 表示加电时常闭点闭合而常开点断开,上电状态 1 表示加电时常闭点断开而常开点闭合。可以很直观地看到它各路的状态。如下图:

第6章 通讯协议及寄存器定义

6.1 通讯协议

遵循标准 MODBUS TCP 协议,协议格式如下:

传输标志	协议标志	长度	单元标志	功能码	数据
2 字节	2 字节	2 字节	1 字节	1 字节	N 字节

传输标志: MODBUS 请求和响应传输过程中序列号,客户端生成,应答时复制该值,高位在前;

协议标志: Modbus 协议默认为 0, 高位在前;

长度:后续字节的长度,高位在前;

单元标志: 从机标志(从机地址);

功能码: 读写 IO 模块 DIO 状态的功能码;

数据:根据功能码和寄存器个数确定数据的大小;

6.1.1 读线圈状态

功能码: 0x01

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x01
起始寄存器地址	2 字节, 高位在前
寄存器个数	2 字节, 高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x01
	1字节,从读寄存器个数计算得出:
	如果寄存器个数被8整除:
字节数	字节数 = 寄存器个数/8
	如果寄存器个数不能被8整除:
	字节数 = 寄存器个数/8+1
数据	每一位表示一路 DIO 的状态,第一个字节的第一位表示起
女 以 加	始寄存器的状态,依次类推

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x01
数据	1字节,错误码,见错误码表

6.1.2 写单个线圈状态

功能码: 0x05

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x05
寄存器	2 字节,高位在前
寄存器值	2 字节, 高位在前, 写 0x0000 表示输出 0, 写 0xff00 表示
可行命性	输出 1

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x05
寄存器	2 字节,高位在前
寄存器值	2 字节, 高位在前, 回应 0x0000 表示 0, 回应 0xff00 表示
711 ## (E.	1

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x05
数据	1字节,错误码,见错误码表

6.1.3 写多个线圈状态

功能码: 0x0f

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x0f
起始寄存器	2 字节,高位在前

寄存器个数	2字节,高位在前
	1字节,字节数从寄存器个数计算得出:
	如果寄存器个数被8整除:
字节数	字节数 = 寄存器个数/8
	如果寄存器个数不能被8整除:
	字节数 = 寄存器个数/8+1
数据	每一位表示一路线圈状态(即是 DO 或其配置),第一个
数据	字节的第一位表示起始寄存器的状态

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x0f
起始寄存器	2 字节, 高位在前
寄存器个数	2 字节, 高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x0f
数据	1字节,错误码,见错误码表

6.1.4 读保持寄存器

功能码: 0x03

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x03
起始寄存器地址	2 字节, 高位在前
寄存器个数	2字节,高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x03
字节数	1 字节,即是寄存器个数 x2,因为每个保持寄存器两个字 节
数据	各个保持寄存器的值,每个保持寄存器占用2字节,并且高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x03
数据	1 字节,错误码,见错误码表

6.1.5 写单个保持寄存器

功能码: 0x06

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x06
寄存器地址	2 字节,高位在前
寄存器值	2 字节, 高位在前

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x06
寄存器地址	2 字节, 高位在前
寄存器值	2 字节, 高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x06
数据	1字节,错误码,见错误码表

6.1.6 写多个保持寄存器

功能码: 0x10

上位机报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x10
起始寄存器地址	2 字节, 高位在前
寄存器个数	2 字节, 高位在前
字节数	1字节,即是寄存器个数 x2,因为每个保持寄存器占用 2
子 1 刻	个字节

数据	各个保持寄存器的值,	每个保持寄存器占用2字节,并且
数据	高位在前	

IO 模块正常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节, 内容为 0x10
起始寄存器地址	2 字节, 高位在前
寄存器个数	2 字节, 高位在前

IO 模块异常应答报文:

从设备地址	1 字节,内容为 0x00-0xff
功能码	1 字节,内容为 0x80+0x10
数据	1字节,错误码,见错误码表

6.1.7 错误码表

错误码	意义
0x01	无效功能码
0x02	无效寄存器地址
0x03	寄存器值无效
0x04	从机设置错误
0x05	ACK,一般用于长时间执行某项任务
0x06	从机忙状态
0x07	NEGATIVE ACK
0x08	MEMORY PARITY ERROR

6.2 寄存器定义

6.2.1 公共寄存器

寄存器地址	功能	种类	读写 状态	取值范围
0	型号高位	保持寄存器	只读	
1	型号低位	保持寄存器	只读	
2	序列号高位	保持寄存器	只读	
3	序列号低位	保持寄存器	只读	
4	版本高位	保持寄存器	只读	
5	版本低位	保持寄存器	只读	
6	BOOT 版本高位	保持寄存器	只读	

7	BOOT 版本低位	保持寄存器	只读	
8	保留	保持寄存器	读写	
9	保留	保持寄存器	读写	
10	地址	保持寄存器	读写	0~255, 单元标志
11	型号名字1	保持寄存器	只读	
12	型号名字 2	保持寄存器	只读] - 字符串格式的型号名字,例
13	型号名字3	保持寄存器	只读	」 于付申格式的至与右子,例 ↓ 如: N721616
14	型号名字 4	保持寄存器	只读	94: N/21010
15	型号名字 5	保持寄存器	只读	
16	IO 模块寄存器基址	保持寄存器	只读	
17	IO 模块寄存器个数	保持寄存器	只读	
18	IO 模块配置总个数	保持寄存器	只读	
19	寄存器个数 1	保持寄存器	只读	某种类型的寄存器个数
20	寄存器类型 1	保持寄存器	 只读	类型取值为: 0 保持寄存器, 1 线圈寄存器
21	寄存器属性 1	保持寄存器	只读	属性按位表示:1 可读,2 可写,3 可配置,4 电平型 DI,
22	是否浮点数1	保持寄存器	月读	5 脉冲型 DI
22	定百仔点数 I	保持寄存器		
	寄存器个数 N	保持寄存器	月	甘轴米刑的安方思入粉
22+4N	奇仔奋↑数 N	休付付付益	月	某种类型的寄存器个数
23+4N	寄存器类型 N	保持寄存器	只读	类型取值为: 0 保持寄存器, 1 线圈寄存器
24+4N	寄存器属性 N	保持寄存器	只读	属性按位表示:1 可读, 2 可写, 3 可配置, 4 电平型 DI, 5 脉冲型 DI
25+4N	是否浮点数 N	保持寄存器	只读	

6.2.2 N721616 寄存器

寄存器地址	功能	种类	读写 状态	取值范围
100	DI 电平输入 1	线圈状态	只读	0表示无输入,1表示有输入
101	DI 电平输入 2	线圈状态	只读	0表示无输入,1表示有输入
102	DI 电平输入 3	线圈状态	只读	0表示无输入,1表示有输入
103	DI 电平输入 4	线圈状态	只读	0表示无输入,1表示有输入
104	DI 电平输入 5	线圈状态	只读	0表示无输入,1表示有输入
105	DI 电平输入 6	线圈状态	只读	0表示无输入,1表示有输入
106	DI 电平输入 7	线圈状态	只读	0表示无输入,1表示有输入
107	DI 电平输入 8	线圈状态	只读	0表示无输入,1表示有输入
108	DI 电平输入 9	线圈状态	只读	0表示无输入,1表示有输入
109	DI 电平输入 10	线圈状态	只读	0表示无输入,1表示有输入
110	DI 电平输入 11	线圈状态	只读	0表示无输入,1表示有输入
111	DI 电平输入 12	线圈状态	只读	0表示无输入,1表示有输入
112	DI 电平输入 13	线圈状态	只读	0表示无输入,1表示有输入
113	DI 电平输入 14	线圈状态	只读	0表示无输入,1表示有输入

		I		T
114	DI 电平输入 15	线圈状态	只读	0表示无输入,1表示有输入
115	DI 电平输入 16	线圈状态	只读	0表示无输入,1表示有输入
116	DI 脉冲输入 1	线圈状态	只读	0表示无输入,1表示有输入
117	DI 脉冲输入 2	线圈状态	只读	0表示无输入,1表示有输入
118	DI 脉冲输入 3	线圈状态	只读	0表示无输入,1表示有输入
119	DI 脉冲输入 4	线圈状态	只读	0表示无输入,1表示有输入
120	DI 脉冲输入 5	线圈状态	只读	0表示无输入,1表示有输入
121	DI 脉冲输入 6	线圈状态	只读	0表示无输入,1表示有输入
122	DI 脉冲输入 7	线圈状态	只读	0表示无输入,1表示有输入
123	DI 脉冲输入 8	线圈状态	只读	0表示无输入,1表示有输入
124	DI 脉冲输入 9	线圈状态	只读	0表示无输入,1表示有输入
125	DI 脉冲输入 10	线圈状态	只读	0表示无输入,1表示有输入
126	DI 脉冲输入 11	线圈状态	只读	0表示无输入,1表示有输入
127	DI 脉冲输入 12	线圈状态	只读	0表示无输入,1表示有输入
128	DI 脉冲输入 13	线圈状态	只读	0表示无输入,1表示有输入
129	DI 脉冲输入 14	线圈状态	只读	0表示无输入,1表示有输入
130	DI 脉冲输入 15	线圈状态	只读	0表示无输入,1表示有输入
131	DI 脉冲输入 16	线圈状态	只读	0表示无输入,1表示有输入
132	DO 输出 1	线圈状态	读写	0表示无输出,1表示有输出
133	DO 输出 2	线圈状态	读写	0表示无输出,1表示有输出
134	DO 输出 3	线圈状态	读写	0表示无输出,1表示有输出
135	DO 输出 4	线圈状态	读写	0表示无输出,1表示有输出
136	DO 输出 5	线圈状态	读写	0表示无输出,1表示有输出
137	DO 输出 6	线圈状态	读写	0表示无输出,1表示有输出
138	DO 输出 7	线圈状态	读写	0表示无输出,1表示有输出
139	DO 输出 8	线圈状态	读写	0表示无输出,1表示有输出
140	DO 输出 9	线圈状态	读写	0表示无输出,1表示有输出
140	DO 输出 10	线圈状态	读写	0表示无输出,1表示有输出
141	DO 输出 10 DO 输出 11	线圈状态 线圈状态	读写	0表示无输出,1表示有输出
142	DO 输出 12	线圈状态 线圈状态	读写	0表示无输出,1表示有输出
	DO 输出 12 DO 输出 13			
144		线圈状态	读写	0表示无输出,1表示有输出
145	DO 输出 14	线圈状态	读写	0表示无输出,1表示有输出
146	DO 输出 15	线圈状态	读写	0表示无输出,1表示有输出
147	DO 输出 16	线圈状态	读写	0表示无输出,1表示有输出
148	上电 DO 配置 1	线圈状态	读写	0表示无输出,1表示有输出
149	上电 DO 配置 2	线圈状态	读写	0表示无输出,1表示有输出
150	上电 DO 配置 3	线圈状态	读写	0表示无输出,1表示有输出
151	上电 DO 配置 4	线圈状态	读写	0表示无输出,1表示有输出
152	上电 DO 配置 5	线圈状态	读写	0表示无输出,1表示有输出
153	上电 DO 配置 6	线圈状态	读写	0表示无输出,1表示有输出
154	上电 DO 配置 7	线圈状态	读写	0表示无输出,1表示有输出
155	上电 DO 配置 8	线圈状态	读写	0表示无输出,1表示有输出
156	上电 DO 配置 9	线圈状态	读写	0表示无输出,1表示有输出
157	上电 DO 配置 10	线圈状态	读写	0表示无输出,1表示有输出
158	上电 DO 配置 11	线圈状态	读写	0表示无输出,1表示有输出
159	上电 DO 配置 12	线圈状态	读写	0表示无输出,1表示有输出

160	上电 DO 配置 13	线圈状态	读写	0表示无输出,1表示有输出
161	上电 DO 配置 14	线圈状态	读写	0表示无输出,1表示有输出
162	上电 DO 配置 15	线圈状态	读写	0表示无输出,1表示有输出
163	上电 DO 配置 16	线圈状态	读写	0表示无输出,1表示有输出
164	DO1 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
165	DO2 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
166	DO3 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
167	DO4 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
168	DO5 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
169	DO6 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
170	DO7 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
171	DO8 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
172	DO9 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
173	DO10 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
174	DO11 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
175	DO12 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
176	DO13 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
177	DO14 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
178	DO15 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
179	DO16 脉冲输出	保持寄存器	读写	取值范围 0-65535ms
180	DI1 滤波时间	保持寄存器	读写	0~65535ms
181	DI2 滤波时间	保持寄存器	读写	0~65535ms
182	DI3 滤波时间	保持寄存器	读写	0~65535ms
183	DI4 滤波时间	保持寄存器	读写	0~65535ms
184	DI5 滤波时间	保持寄存器	读写	0~65535ms
185	DI6 滤波时间	保持寄存器	读写	0~65535ms
186	DI7 滤波时间	保持寄存器	读写	0~65535ms
187	DI8 滤波时间	保持寄存器	读写	0~65535ms
188	DI9 滤波时间	保持寄存器	读写	0~65535ms
189	DI0 滤波时间	保持寄存器	读写	0~65535ms
190	DI11 滤波时间	保持寄存器	读写	0~65535ms
191	DI12 滤波时间	保持寄存器	读写	0~65535ms
192	DI13 滤波时间	保持寄存器	读写	0~65535ms
193	DI14 滤波时间	保持寄存器	读写	0~65535ms
194	DI15 滤波时间	保持寄存器	读写	0~65535ms
195	DI16 滤波时间	保持寄存器	读写	0~65535ms

6.3 协议应用范例

6.3.1 读寄存器命令举例

以下为读取 IO 模块 4 路电平型 DI 和 4 路脉冲型 DI 的命令举例,假定 IO 模块的地址为 1,寄存器起始地址为 100(十六进制为 0x64),个数为 8,上位机发送的数据如下(十六进制表示):

00 01 00 00 00 06 01 01 00 64 00 08

各项分别表示:

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度,6个字节;
- 01 IO 模块的地址,1 字节;
- 01 功能码: 读取线圈状态的功能码;
- 00 64 起始寄存器,即是寄存器 100;
- 00 08 需要读取的寄存器个数,这里举例为 8 路,4 路电平型 DI 和 4 路脉冲型 DI;

从机应答举例,假定 4 路电平 DI 状态状态分别: 1001, 脉冲型 DI 状态是电平型 DI 状态的脉冲表示,瞬间值为: 1001,则回应的数据如下(十六进制表示):

00 01 00 00 00 04 01 01 01 99

各项分别表示:

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 04 后续字节长度, 4 个字节;
- 01 IO 模块的地址, 1 字节;
- 01 功能码: 读取线圈状态的功能码;
- 01 字节数,因为是4个寄存器,所以字节数=寄存器个数/8+1=1;
- 99 各个寄存器的值,从低位开始对应的电平 DI 的第一路;

6.3.2 写单个寄存器命令举例

以下为写 DO1 输出的应用举例,假定 IO 模块的地址为 1,寄存器地址为 108(十六进制为 0x6c),写 DO1 状态 1 的数据如下(十六进制表示):

00 01 00 00 00 06 <mark>01 05 00 6c</mark> ff 00

00 01 传输标志,序列号,表示 0x0001;

- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度, 6 个字节;
- 01 IO 模块的地址,1 字节;
- 05 功能码:写线圈状态的功能码;
- 00 6c 寄存器地址,高位在前,DO1 的寄存器;
- ff 00 向 DO1 写 1 的操作,如果写 0,则填 00 00;

如果执行正常,从机应答数据如下(十六进制表示):

- 00 01 00 00 00 06 <mark>01 05 00 6c</mark> ff 00
- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度,6个字节;
- 01 IO 模块的地址,1 字节;
- 05 功能码:写线圈状态的功能码;
- 00 6c 寄存器地址, 高位在前, DO1 的寄存器;
- ff 00 DO1 的状态返回值,ff 00 表示 DO1 状态为 1,00 00 表示 DO1 状态为 0;

6.3.3 写多个寄存器命令举例

以下为写从 DO1 开始的 4 路 DO, 假定 IO 模块的地址为 1, 寄存器地址为 108(十六进制为 0x6c),写从 DO1 到 DO4 的数据(全部输出)如下(十六进制表示):

- 00 01 00 00 00 08 <mark>01 0f 00 6c 00 04 </mark>01 0f
- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 08 后续字节长度, 8 个字节;
- 01IO 模块的地址,1 字节;
- Of 功能码: 写多路线圈状态的功能码;
- 00 6c 寄存器地址,高位在前,从 DO1 寄存器开始写;

- 00 04 寄存器个数,写 4 路,即是 DO1~DO4;
- 01 字节数,寄存器个数不能被8整除,所以字节数=寄存器个数/8+1=1;
- Of 各路 DO 寄存器的值,该字节的第一位表示第一路 DO,以此类推;

如果执行正常,从机应答数据如下(十六进制表示):

00 01 00 00 00 06 <mark>01 0f 00 6c 00 04</mark>

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度, 6 个字节;
- 01IO 模块的地址, 1 字节;
- Of 功能码: 写多路线圈状态的功能码;
- 00 6c 寄存器地址,高位在前,从 DO1 寄存器开始写;
- 00 04 寄存器个数,总共写 4 路,即是 DO1~DO4;

6.3.4 写单个保持寄存器命令举例

以下为写 DO1 输出时间的应用举例,假定 IO 模块的地址为 1, 寄存器地址为 116 (十六进制为 0x74),写 DO1 时间为 1000 毫秒的数据如下(十六进制表示):

00 01 00 00 00 06 <mark>01 06 00 74 03 e8</mark>

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度, 6 个字节;
- 01 IO 模块的地址,1 字节;
- 06 功能码:写保持状态的功能码;
- 00 74 寄存器地址,高位在前,DO1 的时间寄存器;
- 03 e8 向 DO1 写 1000 毫秒的操作,过了时间后,则自动关闭;

如果执行正常,从机应答数据如下(十六进制表示):

00 01 00 00 00 06 <mark>01 06 00 74 03 e8</mark>

- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 06 后续字节长度,6个字节;
- 01 IO 模块的地址, 1 字节;
- 06 功能码:写保持状态的功能码;
- 00 74 寄存器地址,高位在前,DO1 的时间寄存器;
- 03 e8 DO1 时间寄存器的返回值;

6.3.5 写多个保持寄存器命令举例

以下为写 DO1~DO4 输出时间的应用举例,假定 IO 模块的地址为 1,寄存器地址为 116(十六进制为 0x74),写 DO1~DO4 时间为 1000 毫秒的数据如下(十六进制表示):

- 00 01 00 00 00 0f <mark>01</mark> 10 <mark>00 74 00 04</mark> 08 03 e8 03 e8 03 e8 03 e8
- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 0f 后续字节长度, 15 个字节;
- 01 IO 模块的地址, 1 字节;
- 10 功能码:写保持状态的功能码;
- 00 74 寄存器地址, 高位在前, DO1 的时间寄存器;
- <mark>00 04</mark> 寄存器个数;
- 08 紧跟着的数据长度;
- 03 e8 03 e8 03 e8 03 e8 四路 DO 的输出时间,每一路为 1000 毫秒。

如果执行正常,从机应答数据如下(十六进制表示):

- 00 01 00 00 00 0f <mark>01 10 00 74 00 04</mark>
- 00 01 传输标志,序列号,表示 0x0001;
- 00 00 协议标志, 默认为 0x0000, 表示 Modbus 协议;
- 00 0f 后续字节长度, 15 个字节;

- 01 IO 模块的地址, 1 字节;
- 10 功能码: 写保持状态的功能码;
- 00 74 寄存器地址, 高位在前, DO1 的时间寄存器;
- 00 04 寄存器个数;

第7章 装箱清单

序号	名称	数量	单位	备注
1	主设备 LW N721616	1	台	
2	产品简易说明书	1	张	
3	合格证	1	张	